First Close-Up Images of Pluto Downloaded from New Horizons and Released

First Close-Up Images of Pluto Downloaded from New Horizons and Released

New Horizons left Florida's Cape Canaveral launch pad on January 19, 2006, arrived over Pluto more than nine years later on July 14, 2015, and finally gave scientists its first images over Labor Day weekend, when its year-long, tediously slow data dump first began. Coming in at 2,000 bits per second (1/28th the speed of dial-up), these images - many of which are composited in various ways to form a final image - finally shed some light on what secrets Pluto's surface, atmosphere, and core might hold. All told, the results give sci-fi fanatics a run for their money.

Before today, all of the images you had seen of Pluto were either drawn or mocked up by artists, or looked like this:

Before the images that came in over Labor Day weekend, this shot taken by the Hubble Space Telescope was one of the best photographs we had of Pluto. All the other images we've seen were of similar quality or artist renditions of what the planet might look like.
Credits: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

Thanks to the New Horizons mission, scientists now have fascinating clues about what Pluto's now-thin, but apparently multilayered atmosphere used to look like. What appear to be wind-blown dunes give clues to a possibly thicker atmosphere in Pluto's past. And a multifaceted surface as or more complicated than that of Mars has similarities to Jupiter's Europa, which is thought to have tectonic activity similar to that of Earth.

Today's images are just the beginning of a new era of Pluto-centric exploration. Follow the project here and here, and enjoy the images below (all captions directly from NASA).

[Via NASA.gov]

Mosaic of high-resolution images of Pluto, sent back from NASA’s New Horizons spacecraft from Sept. 5 to 7, 2015. The image is dominated by the informally-named icy plain Sputnik Planum, the smooth, bright region across the center. This image also features a tremendous variety of other landscapes surrounding Sputnik. The smallest visible features are 0.5 miles (0.8 kilometers) in size, and the mosaic covers a region roughly 1,000 miles (1600 kilometers) wide. The image was taken as New Horizons flew past Pluto on July 14, 2015, from a distance of 50,000 miles (80,000 kilometers).
Credits: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

In the center of this 300-mile (470-kilometer) wide image of Pluto from NASA’s New Horizons spacecraft is a large region of jumbled, broken terrain on the northwestern edge of the vast, icy plain informally called Sputnik Planum, to the right. The smallest visible features are 0.5 miles (0.8 kilometers) in size. This image was taken as New Horizons flew past Pluto on July 14, 2015, from a distance of 50,000 miles (80,000 kilometers).
Credits: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

This 220-mile (350-kilometer) wide view of Pluto from NASA’s New Horizons spacecraft illustrates the incredible diversity of surface reflectivities and geological landforms on the dwarf planet. The image includes dark, ancient heavily cratered terrain; bright, smooth geologically young terrain; assembled masses of mountains; and an enigmatic field of dark, aligned ridges that resemble dunes; its origin is under debate. The smallest visible features are 0.5 miles (0.8 kilometers) in size. This image was taken as New Horizons flew past Pluto on July 14, 2015, from a distance of 50,000 miles (80,000 kilometers).
Credits: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

This image of Pluto’s largest moon, Charon, taken by NASA’s New Horizons spacecraft 10 hours before its closest approach to Pluto on July 14, 2015 from a distance of 290,000 miles (470,000 kilometers), is a recently downlinked, much higher quality version of a Charon image released on July 15. Charon, which is 750 miles (1,200 kilometers) in diameter, displays a surprisingly complex geological history, including tectonic fracturing; relatively smooth, fractured plains in the lower right; several enigmatic mountains surrounded by sunken terrain features on the right side; and heavily cratered regions in the center and upper left portion of the disk. There are also complex reflectivity patterns on Charon’s surface, including bright and dark crater rays, and the conspicuous dark north polar region at the top of the image. The smallest visible features are 2.9 miles 4.6 kilometers) in size.
Credits: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

This image of Pluto from NASA’s New Horizons spacecraft, processed in two different ways, shows how Pluto’s bright, high-altitude atmospheric haze produces a twilight that softly illuminates the surface before sunrise and after sunset, allowing the sensitive cameras on New Horizons to see details in nighttime regions that would otherwise be invisible. The right-hand version of the image has been greatly brightened to bring out faint details of rugged haze-lit topography beyond Pluto’s terminator, which is the line separating day and night. The image was taken as New Horizons flew past Pluto on July 14, 2015, from a distance of 50,000 miles (80,000 kilometers).
Credits: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

Two different versions of an image of Pluto’s haze layers, taken by New Horizons as it looked back at Pluto's dark side nearly 16 hours after close approach, from a distance of 480,000 miles (770,000 kilometers), at a phase angle of 166 degrees. Pluto's north is at the top, and the sun illuminates Pluto from the upper right. These images are much higher quality than the digitally compressed images of Pluto’s haze downlinked and released shortly after the July 14 encounter, and allow many new details to be seen. The left version has had only minor processing, while the right version has been specially processed to reveal a large number of discrete haze layers in the atmosphere. In the left version, faint surface details on the narrow sunlit crescent are seen through the haze in the upper right of Pluto’s disk, and subtle parallel streaks in the haze may be crepuscular rays- shadows cast on the haze by topography such as mountain ranges on Pluto, similar to the rays sometimes seen in the sky after the sun sets behind mountains on Earth.
Credits: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

Log in or register to post comments

2 Comments

Jeff Colburn's picture

Amazing photographs, thanks for sharing them.

Have Fun,
Jeff

Paulo Macedo's picture

I just wonder the lanscape photography one could do there....